[Udacity] Intel® Edge AI for IoT Developers
Nanodegree Program–nd131
Intel® Edge AI for IoT Developers
Estimated Time
3 Months
At 10 hours / week
Prerequisites
Intermediate Python, and Experience with Deep Learning, Command Line, and OpenCV
In collaboration with
What You Will Learn
SYLLABUS
Intel® Edge AI for IoT Developers
Leverage the Intel® Distribution of OpenVINO™ Toolkit to fast-track development of high-performance computer vision and deep learning inference applications, and run pre-trained deep learning models for computer vision on-premise. You will identify key hardware specifications of various hardware types (CPU, VPU, FPGA, and Integrated GPU), and utilize the Intel® DevCloud for the Edge to test model performance on the various hardware types. Finally, you will use software tools to optimize deep learning models to improve performance of Edge AI systems.
Lead the development of cutting-edge Edge AI applications that are the future of the Internet of Things. Leverage the Intel® Distribution of OpenVINO™ Toolkit to fast-track development of high-performance computer vision and deep learning inference applications.
3 months to complete
Prerequisite Knowledge
This program requires intermediate knowledge of Python, and experience with Deep Learning, Command Line, and OpenCV.
Edge AI Fundamentals with OpenVINO™
Leverage a pre-trained model for computer vision inferencing. You will convert pre-trained models into the framework agnostic intermediate representation with the Model Optimizer, and perform efficient inference on deep learning models through the hardware-agnostic Inference Engine. Finally, you will deploy an app on the edge, including sending information through MQTT, and analyze model performance and use cases
Deploy a People Counter at the Edge
Hardware for Computer Vision & Deep Learning Application Deployment
Grow your expertise in choosing the right hardware. Identify key hardware specifications of various hardware types (CPU, VPU, FPGA, and Integrated GPU). Utilize the Intel® DevCloud for the Edge to test model performance and deploy power-efficient deep neural network inference on on the various hardware types. Finally, you will distribute workload on available compute devices in order to improve model performance.
Design a Smart Queuing System
Optimization Techniques and Tools for Computer Vision & Deep Learning Applications
Learn how to optimize your model and application code to reduce inference time when running your model at the edge. Use different software optimization techniques to improve the inference time of your model. Calculate how computationally expensive your model is. Use the DL Workbench to optimize your model and benchmark the performance of your model. Use a VTune amplifier to find and fix hotspots in your application code. Finally, package your application code and data so that it can be easily deployed to multiple devices.
Build a Computer Pointer Controller
Learn with the best
Stewart Christie
Community Manager – IoT Developer Program at Intel®
Stewart is a Technical Evangelist for Intel®, responsible for running workshops, creating content, and supporting the developer community in IoT. He is skilled in developing applications that interface hardware with software for computer vision, robotics, and language processing.
Michael Virgo
Senior Curriculum Manager at Udacity
After beginning his career in business, Michael utilized Udacity Nanodegree programs to build his technical skills, eventually becoming a Self-Driving Car Engineer at Udacity before switching roles to work on curriculum development for a variety of AI and Autonomous Systems programs.
Soham Chatterjee
Graduate Student at the Nanyang Technological University
Soham is an Intel® Software Innovator and a former Deep Learning Researcher at Saama Technologies. He is currently a Masters by Research student at NTU, Singapore. His research is on Edge Computing, IoT and Neuromorphic Hardware.
Vaidheeswaran Archana
Graduate Student at the National University of Singapore
Archana is a graduate student at NUS. She is currently pursuing her research in Deep Learning and Smart Grids, under Professor Dipti Srinivasan. Archana is an Intel® Software Innovator and a former Deep Learning Engineer at Saama Technologies.
Get started with
Intel® Edge AI for IoT Developers
Learn
Average Time
Benefits include
- Real-world projects from industry experts
- Technical mentor support
- Personal career coach & career services
STAY SHARP WHILE STAYING IN
- Financial support available worldwide to help in this challenging time
- Spend your time at home learning new, higher-paying job skills
- Commit to a brighter future by learning today
Program Details
PROGRAM OVERVIEW – WHY SHOULD I TAKE THIS PROGRAM?
Why should I enroll?
Computer Vision is a fast-growing technology being deployed in nearly every industry from factory floors to amusement parks to shopping malls, smart buildings, and smart homes. It is also driving the evolution of machine learning and human interactions with intelligent systems. Additional applications include drones, security cameras, robots, facial recognition on cell phones, self-driving vehicles, and more, which means these industries and more all need developers with computer vision and deep learning IoT experience.