[Coursera] Machine Learning Engineering for Production (MLOps) Specialization
Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.
WHAT YOU WILL LEARN
Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements.
Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application.
Build data pipelines by gathering, cleaning, and validating datasets. Establish data lifecycle by using data lineage and provenance metadata tools.
Apply best practices and progressive delivery techniques to maintain and monitor a continuously operating production system.
About this Specialization
Understanding machine learning and deep learning concepts is essential, but if you’re looking to build an effective AI career, you need production engineering capabilities as well.
Effectively deploying machine learning models requires competencies more commonly found in technical fields such as software engineering and DevOps. Machine learning engineering for production combines the foundational concepts of machine learning with the functional expertise of modern software development and engineering roles.
The Machine Learning Engineering for Production (MLOps) Specialization covers how to conceptualize, build, and maintain integrated systems that continuously operate in production. In striking contrast with standard machine learning modeling, production systems need to handle relentless evolving data. Moreover, the production system must run non-stop at the minimum cost while producing the maximum performance. In this Specialization, you will learn how to use well-established tools and methodologies for doing all of this effectively and efficiently.
In this Specialization, you will become familiar with the capabilities, challenges, and consequences of machine learning engineering in production. By the end, you will be ready to employ your new production-ready skills to participate in the development of leading-edge AI technology to solve real-world problems.
Applied Learning Project
By the end, you’ll be ready to
• Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements
• Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application
• Build data pipelines by gathering, cleaning, and validating datasets
• Implement feature engineering, transformation, and selection with TensorFlow Extended
• Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas
• Apply techniques to manage modeling resources and best serve offline/online inference requests
• Use analytics to address model fairness, explainability issues, and mitigate bottlenecks
• Deliver deployment pipelines for model serving that require different infrastructures
• Apply best practices and progressive delivery techniques to maintain a continuously operating production system
Take Courses
A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you’d like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.
Hands-on Project
Every Specialization includes a hands-on project. You’ll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you’ll need to finish each of the other courses before you can start it.
Earn a Certificate
When you finish every course and complete the hands-on project, you’ll earn a Certificate that you can share with prospective employers and your professional network.
Description
Machine Learning Engineering for Production (MLOps) Specialization is a training course to become a machine learning specialist. Understanding the concepts of machine learning and deep learning is essential, but if you are looking to build an effective artificial intelligence specialty, you also need production engineering facilities. Effective development of machine learning models requires competencies that are more commonly found in areas such as software engineering and DevOps. Machine learning engineering for production is the result of combining the basic concepts of machine learning with the practical skills of modern software development and engineering roles.
In this course, you will become familiar with the possibilities, challenges and results of machine learning engineering in production. At the end of the course, you can apply your newly acquired skills in the development of pioneering artificial intelligence technologies to solve real-world problems.
Skills to learn in Machine Learning Engineering for Production (MLOps) Specialization:
- Manage machine learning systems
- Development, model and Pipelines data
- Machine learning engineering for production
- Doing work at the human level
- Concept Drift
- Baseline model
- Challenges of machine learning development
- Machine learning metadata
- Convolutional neural network
Size: 1.20 GB
https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops.